Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae.
نویسندگان
چکیده
Nucleotide excision repair (NER) is universally used to recognize and remove many types of DNA damage. In eubacteria, the NER system typically consists of UvrA, UvrB, UvrC, the UvrD helicase, DNA polymerase I, and ligase. In addition, when DNA damage blocks transcription, transcription-repair coupling factor (TRCF), the product of the mfd gene, recruits the Uvr complex to repair the damage. Previous work using selected mutants and assays have indicated that pathogenic Neisseria spp. carry a functional NER system. In order to comprehensively examine the role of NER in Neisseria gonorrhoeae DNA recombination and repair processes, the predicted NER genes (uvrA, uvrB, uvrC, uvrD, and mfd) were each disrupted by a transposon insertion, and the uvrB and uvrD mutants were complemented with a copy of each gene in an ectopic locus. Each uvr mutant strain was highly sensitive to UV irradiation and also showed sensitivity to hydrogen peroxide killing, confirming that all of the NER genes in N. gonorrhoeae are functional. The effect of RecA expression on UV survival was minor in uvr mutants but much larger in the mfd mutant. All of the NER mutants demonstrated wild-type levels of pilin antigenic variation and DNA transformation. However, the uvrD mutant exhibited higher frequencies of PilC-mediated pilus phase variation and spontaneous mutation, a finding consistent with a role for UvrD in mismatch repair. We conclude that NER functions are conserved in N. gonorrhoeae and are important for the DNA repair capabilities of this strict human pathogen.
منابع مشابه
A study on the frequency of vaginal species of Mycoplasma genitalium, Gardnerella vaginalis and Neisseria gonorrhoeae among pregnant women by PCR technique
Bacterial vaginosis or non-specific vaginitis describes the disease caused by a change in the normal Flora of the vagina, which leads to the elimination of Lactobacilli, generating hydrogen peroxide and excess growth of bacteria, particularly anaerobic bacteria. This disease is the most prevalent infection of the female genital tract, and the rate of frequency of anaerobic bacteria, specificall...
متن کاملMolecular epidemiology of Neisseria gonorrhoeae: sequence analysis of the porB gene confirms presence of two circulating strains.
The phenotypic and genotypic characteristics of Neisseria gonorrhoeae strains fluctuate over time both locally and globally, and highly discriminative and precise characterization of the strains is essential. Conventional characterization of N. gonorrhoeae strains for epidemiological purposes is mostly based on phenotypic methods, which have some inherent limitations. In the present study seque...
متن کاملAssociation of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population
Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...
متن کاملComparison of serologic and genetic porB-based typing of Neisseria gonorrhoeae: consequences for future characterization.
Due to temporal changes in the epidemiology of gonorrhea, a precise characterization of Neisseria gonorrhoeae is essential. In the present study genetic heterogeneity in the porB genes of N. gonorrhoeae was examined, and serovar determination was compared to porB gene sequencing. Among 108 N. gonorrhoeae isolates, phylogenetic analysis of the entire porB alleles (924 to 993 bp) identified 87 un...
متن کاملNeisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide.
The strict human pathogen Neisseria gonorrhoeae is exposed to oxidative damage during infection. N. gonorrhoeae has many defenses that have been demonstrated to counteract oxidative damage. However, recN is the only DNA repair and recombination gene upregulated in response to hydrogen peroxide (H(2)O(2)) by microarray analysis and subsequently shown to be important for oxidative damage protecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 192 3 شماره
صفحات -
تاریخ انتشار 2010